Dependable
Systems

Markov Chains
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O
| Continuous Time Markov Chains (1)

Continuous Time Markov Chains are a special type of stochastic
processes with discrete state and continuous time.

They are characterized by a (finite) set of states {s;, ..., Sy} in
which the system can be.
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| Continuous Time Markov Chains (2)

The system remains in a state s; for a random exponentially

distributed amount of time.
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O
| Continuous Time Markov Chains (3)

After that, it jumps to another state.
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I
| Continuous Time Markov Chains (4)

Markov Chains are stochastic processes where the probability of the
state at time t,, depends only on the state at which the system
was in a previous time t,,_; (and the total time passed t,-t,., ) -

(0 <ty <ty < ... <ty <ty)
PT{Z(tm) = Sjm ’Z(tm_l) = Sjm—17 yoe ,Z(tl) = Sjl} =

= Pr{Z(tn) = sj, |Z(tm_1) = 8j,, 1 }

To simplify the definition, we will introduce the following notation:

m(t) = PriZ(t) = s}
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O
| Continuous Time Markov Chains (5)

Usually CTMC are drawn as graphs, where nodes represents the states,
and edges the possible transitions among the states.
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O
| CTMC for dependability (1)

In dependability studies, states of the CTMC encodes the working / failure
condition of the components.

For example a single non-repairable component, with exponential failure
time distribution, can be modeled by a 2 states Markov chain.

State 0 (s,):

State 1 ( o  Component
° component is has failed

working
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CTMC for dependability (2)

If the system is composed by more components, Markov chain states
encode all the possible combinations of their working and failure
states.

State 01 (s,):
« First component has failed
« Second component is working

S

S1
State 11 (sy):
* Both components
are working

State 00 (s,):
* Both components

have failed
\:3

State 01 (s;3):
» First component is working
« Second component has failed
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| D
| Continuous Time Markov Chain - transition rates

Each transition from state s; to state s; has associated a rate g;; which
corresponds to the rate of an exponential random variable.

The system in state s; jumps to state s; after an exponentially distributed
random amount of time with rate gj; .

If there are more than one arc exiting from state s; , the system follows
the evolution along the path of the event that happens first (race

policy).
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| D
| Transition rate
||

The transition rate g;; can be seen as the limit of the
probability that the system performs a jump in a small time At ,
(divided by At):

prob("System jumps from s, to s ; in At")

% =0 At
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I
| CTMC for dependability - transition rates

In dependability models, transition rates encodes the failure time
distribution.

If exponential failure rates are assumed, the mapping between MTTF and
transition rates is straight-forward.

1
M= MTTF,
PR
MTTF,
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I
| CTMC for availability

Availability can be considered by modeling also the repair, adding arcs in
the opposite direction characterized by the corresponding repair rate.
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I
| State Space (1)

In general, let us consider a system with n different components.
Each component k is associated with a variable x; that:

=X, = 1 if component k is working
=X, =0 if component k is not working

The value of all the variables is grouped in a vector
X = (X1 e, Xp)
Vector x represents a state s; of the system.

In general, the variable that characterize a component can have
more than two values (i.e. working, degraded, failed): this is
however an advanced use and it will not be covered in this course.
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I
| State Space (2)

The set 2={s,=x= (x4, ..., X;), ...} of all the possible configurations,
is called the state space of the system.

Since each state is composed by n components that can be either
0 or 1, we have 2" different states:

Q| =20

The number of components equals to 0 in a state, represent the
number of failures in the system.
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I
| The Chapman-Kolmogorov equation (1)

CTMC analysis allows to compute the probability 7(t) that the
system is in each state s; of 2 at time t.

More formally, from z;(t) we can compute the probability 7;(t+At)
at time t+A4t as:

Jumping from s; to s; in At
\
\

7,(t + At)= ni(t)-[l—qu.j -At}iZqﬁ 7 (t) At

J#I J#I
\ J
|

Not leaving state s; in At

.. Because the exponential assumption, if the rate is g;; , then the
probability that the event happens in a small At is:

qij : At .
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I
| The Chapman-Kolmogorov equation (2)

To simplify the equations we define g;; as:

4 = _Z q;

J#i
(¢ +At)= ﬁi(t)-(l—z%. -Atj+2qﬁ -ﬂ_j(t)-At

7w, (1+At) =7, (t)+m,(1) g, -At+zqﬁ 7t (1) At

J=i

- I POLITECNICO DI MILANO

© M. Gribaudo




O
| The Chapman-Kolmogorov equation (3)

The equations becomes: 4 80) = (1) (1) 0,8+ Sy (1) &1

7 (t+Ar)=7(0)+ Y g, 7 () A

With some computation we can find:

t+At
i Zqﬂ

Taking the limit of A4t to O, we have.

:Zq]'i'ﬂ'](t)
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I
| Infinitesimal generator
|

The terms g;; can be collected in a matrix Q :

41 - Y

qnl tec qnn

Q is called the Infinitesimal generator.

Due to the definition of g;;, the elements of all the rows of matrix
Q must sum up to 0.
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I
| Chapman-Kolmogorov equation in matrix form

The Chapman-Kolmogorov equation in matrix form becomes:

dﬂ@)_
R (¢t)-0

If we know the initial state distribution #(0) , we can compute the
transient probability distribution at time t, by solving the
differential equation using #(0) as the initial condition.

In dependability models, #(0) is usually equal to a vector in which
the state corresponding to all the components working has
probability equal to 7, and all other states equal to 0.
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I
| Example: transient availability of a component (1)

Consider a single component which might either be up (state s,) or
down (state s,).

Let as call respectively A the failure rate of the component, and u
its repair rate, both considered to be exponentially distributed.

We thus have:

1 A
A= s 5 A A
MTTF ~ * 0=| ~
1 a @ u —-u
T MTTR i
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Ll

xample: transient availability of a component (2)

We assume that the system starts initially working:

A0) U(0) H 1 0 ‘

The availability can then be studied by solving the following system

JA(H) » o U(t)=1-A(@) KA(Z‘) _u + A e—(Mu)t\
— =" (1) +uU(1) %?(mu)m)w A+u A+u
AU _ 5 Aty - uli(t) U= e
u A+u A+u
\_ J

of differential equations:
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| Example: transient availability of a component (3)

If we focus on the availability A(t), we can see that:

MTTF

A+u MTTR+ MTTF

A o .
A =—2 4 e lim A1) =
A+u A+u >
1.0
\ AG)
W+p) ——————————===—r

0.0
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I
| Defining the infinitesimal generator (1)

In general, we can create the Q matrix from the graphical representation,
by first enumerating the states, and associate the states with rows and
columns of matrix Q...

&
Il
[

[
[
[
[
[
[
[
—————I—————
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I
| Defining the infinitesimal generator (2)

Then we put the transition rates associated to the arcs in the
corresponding rows and columns.

Sq S, S3  S4
- A A S
u, - A | s
©- u, e A, | oS3
u, u - | s
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O
| Defining the infinitesimal generator (3)

Finally we compute the diagonal element by summing the other elements
of the rows, and changing their sign.

S1 S? S3 S4
_)-1_&2 A«l A«z S1
0- 22 _ALLI_A’Z A«z 52
u, umA A s
Al"tz ILL1 _luz_lu1 54
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I
| Defining the infinitesimal generator (4)

Since the state in which all the components are equal to working is s;, we
can define the initial state #(0) as follows:

S1 S S3 S4

n(0)=‘1 000

POLITECNICO DI MILANO




Solution of the ODE (1)

We can then solve the corresponding ODE using a numerical
computation package (e.g. GNU Octave):

(;fTFl = 10; i\
MTTF2 = 20;
MTTR1 = 2;
MTTR2 = 3;
ml = 1/MTTR1;
Q= [-11-12, 11 , 12 , O;
ml ,-ml-12, o , 12;
m2 , 0 ,-m2-11, 11;
PO = [11 o0, 0, 0];
t = linspace(0,10,101);

Sol=1lsode(@(x,t) x'*Q, p0, t);

\E;ot(t, Sol, "=-")

08

06

04

(" h
“ACA A A
N s
u, -u-A A
N A
7= 100 0 dz_t(f):ﬂ(t).Q)

1

6 8 10
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Solution of the ODE (1)

In Matlab, the code would be the following (the blue part is
replaced with the one shown in red)

KE;TFl

MTTF2
MTTR1
MTTR2

11
12
ml
m2

Q = [

p0 =

-

-11-12,

plot(t,

10;
20;
2;
3;

1/MTTF1;
1/MTTF2;
1/MTTR1;
1/MTTR2;

T, 12 ,
ml ,-ml-12, o ,
m2 , 0 ,-m2-11,

0, m2 , ml

[1, O,

0, 0];

[t, Sol]=oded5(@(t,x) Q’*x,

Sol,

—");

0;
12;
11;

,—-m2-ml];

[0 107,

~N

p0");

J

(" h
“ACA A As
NI A
u, “u-A A
Wl Ml
7= 100 0 d’;_l@:ﬂ(t).gj
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O
| Solution of the ODE (2)

The solution of the ODE is a time dependent vector #{(t), that tell us
the probability of each state at each time instant t.

1=

0.8 -

0.6 -

0.4

In dependability studies however, we are not interested in this
information, but in other measures such as the probability that
the system is working or it has failed.

This depends on how the components influences the availability of
the system (i.e. are they in series or in parallel)
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Structure Function (1)
| - __________________________________________________________________________________________________________

A general framework to asses dependability questions from Markov chain
solutions is the following.

Let us define a variable y that identifies the working state of the entire
system:

=y = 1 if the system is working
v =0 if the system is not working

The state of the system y depends on the configuration of its components
X = (X1) ey Xn)

In particular we define a function ¢(x) such that:

v =¢(x) =1 if the system is working in state x
v = ¢g(x) =0 if the system is not working in state x

¢(x) is called the structure function.
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I
| Structure Function (2)
|

The state space Q can be partitioned in two subsets thanks to the
structure function ¢(x):

O, = {Q:p@)=1} Q4= 1{Q:¢(x) =0}
0 = Q, UQ, ; Q, NN =0
;'\'T — ;I\'Tu + ;'r\'rd

Q, is the set of up-states : the states where the system is working

Q, is the set of down-states : the ones in which the system has failed
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I
| Structure Function (3)
|

The structure function ¢(x) can be defined to reflect the parallel
and the series of the considered components, and derived, as the
name suggests, from the structure of the system.

A1

A2

A1

A3
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Structure Function (4)

For example, ¢(x) for the two components system series and
parallel can be defined as follows:

S2
Component | System Series Parallel
state state # system system
z y =) | y=p)
*
0 failures 11 1 1 1
S3
— 1 Aq A> —— 1 failures 01 2 0
10 3 0
Al 2 failures 00 4 0 0
A2
m




Structure Function (5)

For the three components system, ¢(x) for the configuration a) and b)
shown below can be defined in this way:

Component | System | Config. Config.
State state # a) b)
z y=p@) | y=p(2)
0 failures 111 1 1 1
011 2
1 failures 101 3
110 4 0 1
A1
— A3 — a)
A2 001 5 0 1
2 failures 010 6 0 0
100 7 0 0
A1 A2
*‘ }* b) :
3 failures 000 8 0 0
A3
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Structure Function (6)

In the four examples we have Q,and Q, defined as:

A> — QU = {51}
Qd = {SZ: S35 S4}
A1
| Qu = {51) 52, 53}
Qq = {54}
A2

A1

Qu = {51) 52, 53}
Qd = {54) S5, S6, S7, 58}

A3 —

A2

A2
Qu = {51) 52, S3, S4, 55}
A3 Qd = {56) 57, 58}
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O
| Reliability of CTMC models

If we are modeling non-repairable systems, we can define the
reliability R(t) and the unreliability F¢(t) as:

Ry(n)= Y m,(1)

5,€0Q,

F()=1-R0)= Y m1)

5;,€8Q,
We also compute the MTTF as:

MTTF = sz(t)dt - E }Jri(t)dt

5;€Q, 0
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O
| Availability of CTMC models

For repairable systems, we can define the availability A¢(t) and the
unavailability Us(t) as:

NOEEAC

U, () =1-A(1)="Y m,(1)

Note that the expression is the same as for reliability:
however the Markov chain is different
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I
| Structure functions - new capabilities

Structure functions allows also to consider more complex scenarios:

Majority voters (also with components that are not i.i.d).

Non series/parallel systems
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Majority voter (KooN system)

=
Component | System Config.
State state # | 2-out-of-3
x y=p(®)
0 failures 111 1 1
011
1 failures 101 3
Af 110 4
Voter
A2 — 001 ] 0
2 failures 010 6 0
100 7 0
A3
_ | 3 failures 000 8 0
Q= {51, 52, 53, S4f

Qg = {55’ S6> 57, 58}
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Non Series-parallel systems

|
failures | Component | System | State Structure
state state # | Probability function

1 4 @ p(z)

0 11111 1 Ry Rz Ry Rq R 1

01111 2 [l — Ry Ry Ry Rq Ry 1

5 - 10111 3 Ri[l — Ry] Ry Ra Rs 1

1 11011 4 Ry Ra[l — Rs] RaRs 1

11101 5 Ri R2 R3[1 — Ra]Rs 1

11110 6 Ry Ro Ry Ra[l — Rs) 1

3 5 00111 7 [L — R1][l — Ra] Rs Ra Rs 1
01011 8 [1 — Ri]R2[1 — R3] R4 Rs 1

01101 9 [1 — Ry Ry Ra[l — R4]Rs 1

01110 10 [l — Ri]R2 Ra Ra[l — Rs) 1

2 10011 1 Ry[1 — Ry][l — Rg] R4 Rs 1

= 10101 12 Ri[l — R2]Rs[l — Ra]Rs 1
e {51’ 52, 33, 545 555 65 10110 13 Rl{l— RQ%RR[Rq[l—]Rﬁ] 1
57, 585, 59, 510, S11, 512, 11001 4 | RiRp[l — Ry][l — Ryq]Rs 1
11010 15 Ry Ra[l — Rs]Ra[l — Rjs) 1

513, S14, S15, 518, 5205 11100 16 | RyRyRs[1 — R4][l — Ryl 0
00011 17 1 — Ri][l — R2][l — Ra] Ra Rs 0

S21, S24f 00101 18 1 - RIHI = Rg%[‘?g 1 —]Rd]RF, 1
00110 19 1 — Ry|[1 — Ra]Rs Ra[l — Rg] 0

O 01001 20 1 — Ry Ra[1 — Rg][1 — R4]Rs 1
=S, S47. S10, S>>, S 3 01010 21 1 — Ry|Ra[l — Ra] Rq[l — Rg 1
d = {S16> S17> S19, S22, 523, oroto 2 '1_31%32%3[1_13,1%1_35% .
Sy5, S26, S27, S28, S29, 10001 23 Ri[l — R3][1 — Rg][1 — R4]Rs 0
10010 2 Ri[l — R2|[l — R3] Ra][l — Rs 1

S30, 31, S32} 10100 % | Ry {1 - Rg%[ﬂg i —]Rd]][[l - R,:,]] 0
11000 % RiR2[1 — R3][1 — Ra][l — Rs] 0

00001 o [1 — R1][l — R2][1 — R3][I — R4] Rs 0

00010 28 [1 — Ri][1 — Ra][1 — R3] Ra[l — Rs] 0

4 00100 20 [l — R1][l — R2]Ra[l — Ra][l — Rs] 0

01000 30 [l—Rl]Rg[l—Rg][l—Hq][l—R,:,] 0

10000 31 Ri[1 — R2][1 — R3][1 — Ra][1 — Rs] 0

5 00000 32 [1 — R1][l — Ra][1 — Ra][l — Ra4][1 — Rs) 0
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I
| Steady-state distribution of a CTMC (1)

Under very common hypothesis, the transient probability #(t) tends
to a fixed vector zas t tends to the infinity regardless of the
distribution of the initial state #(0) :

lm7z(t)=r, Vﬂ(O)

[—>00

This limit distribution z, is called the Steady-state distribution of
the CTMC.
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I
| Steady-state distribution of a CTMC (2)

When the system is in steady-state, the distribution of its states
does not change, meaning that the derivative over time is zero:

dﬂ@)zo
dt

This allow us to write down an equation to determine such limit
distribution:

470 _ 1.0 7 Q=0
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O
| Steady-state distribution of a CTMC (3)

However, since the rows of matrix Q sums up to 0, they are not linear
independent and the system has infinite solutions.

We can use the normalizing condition that the sum of the probabilities of
the states is equal to 1 to find a single solution.

(7Z'°Q=O

<Z:ﬂl.:l

_ l:1
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| Availability and steady-state distribution

By exploiting the steady state distribution, the availability of a
repairable system can be easily computed.

f7z_ Q — O AS = 2 El
) n 5;,E€Q,

zﬂl: Us=1_AS_ E‘nz
L i=1 5;,€Q,

Using these relations and CTMC, we can compute availability of complex
scenarios, such as single-repair man systems, that cannot in general
be easily considered with conventional techniques.
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I
| Example: availability of a component

For example, if we compute the steady state distribution for a
single repairable component, we have:

P (7-0=0
MTTF -A A )

1 @ Z?Z' =1

U MTTR =l

u MTTF
AA+uU =0 ~ MU=24 A=)L+,u=MTTR+MTTF
A+U=1 A+l A= g__* __ MTIR
H " A+u MTTR+MTTF
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Computation of the stationary solution

To solve more complex systems, we can replace one column of the
matrix (e.g. the first) with a column of ones to express the
normalization condition, invert it, and multiply with a vector
that has one in the same place, and zero otherwise.

10; “\ (r ‘\

20; A A

, U A M.

-u-A A

Uu, u, U, u,

(ﬁTTFl
MTTF2
MTTR1
MTTR2

QS
I
_ A .

11
12
ml
m2

1/MTTF1;
1/MTTF2;
1/MTTR1;

1/MTTR2; Uu=/1 0 0 0 t=0Q0"1 -u

- J

0Q [-11-12, 11 , 12 , O;

ml ,-ml-12, o , 12;

m2 , 0 ,-m2-11, 11; . . .

0, m2 , ml ,-m2-ml]; (in this case, the same code will work
both in Octave and Matlab)

u=1_[1, 0, 0, 0];

Q(:,1) = ones(4,1);

Kgi = u * inv(Q) ‘4/
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I
| Single repair man example (1)

Let us consider a system with two different components in parallel. There
is a single repair man: if two components fail, he first finishes
repairing the one who broke first before addressing the second.

1
)Ll —
MTTF,
PR
MTTF,
" - 1
' MTTR,
1
W, The failure state must be split into two, to remember

MTTR2 which component broke first.
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With:
MTTF1
MTTF2
MTTR1

I
| Single repair man example (2)
|
To compute the availability, we define the set of up-states as:
Q, ={s1, S3, 53}
_A«I_AZ A’l A«z
xu1 _MI_A“Z A2
Q= Mz _Mz_kl Atl
uo U
U, U,
10; [(7-0 Ag= Y m;=0.95564 The single
20; J & 5EQ, repair man
. reduces the
i ' Z 7T 1- H | MTTR, =(0.97826 availability of
’ L i=1 MTTR,+MTTF; 2.3%

MTTR2
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Exercise
||

Now us consider a system with two different components in parallel, a
single repair man, but with priority to component 1: if two components
fail, he first repairs component 1. If he was working to repair

component 2, and also component 1 breaks, he: stop working on
component 2, repair component 1, and then resumes his work on component 2.

M= MTTF,
PR
MTTF,
P
' MTTR,
n
P
* MTTR,
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O
| A correlated example (1)

Let us consider a system with two components such that:

= The first component has:
e failure rate A,
e repair rate uy
= The second component has:
e failure rate 4,
e repair rate u;

= There is an event, that happens at rate «, that breaks both
components at the same time.

We are interested in the availability of this system
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O
| A correlated example (2)

The system has the two components state space previously introduced.
However, the CTMC is different, since it also considers the event that
causes a failure in both components at the same time:
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O
| A correlated example (3)

We can compute the transition matrix of the CTMC:
S2

S3
—(a+A +A,) A A, a
U, —(a+ A, +u,) 0 o+ A,
e- , 0 —(a+M+u,) a+h
0 W, w -, + 1)
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| A correlated example (4)

From the infinitesimal generator, we can compute the steady state

solution:
—(a+A +4,) A
U, —(o+A, +w,)
Q =

U, 0

0 U,
A, =0.001
u =0.1
A, =0.002
u, =0.08
a=0.0001

—(a+ A +u,) o+ A

A,

0

U,
7, =0.96435
7, =0.01008
7, =0.02447
7, =0.00080

04

a+ A,

—(u, +u,)
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A correlated example (5)

Recalling the definition of the structure function ¢(x) for the two
component system in series and parallel, and the corresponding
expression for the availability:

Cﬂmtptlnent Sfﬁfﬁt; Smr;zes Parfﬂef Al Ao Q, = {54}
state state system system O =15, S2 s
@ y=p@) | y= o) d = {52 S 54
0 failures 11 1 1 1 A1
| I Q= {51; 52, 53}
Qq = {54
1 failures 01 2 0 1 A2
10 3 0 1
2 failures 00 4 0 0

Ag = Eﬂ'i

5;,€Q,
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| A correlated example (6)

We can compute the availability of the considered example, when
both components are either in series of in parallel.

7, =0.96438
7, =0.01023
7, =0.02458
7, =0.00081

A2

- Q,={s} Ac= ;= 0.96435

A1

A2

Qq = {52, S3, S4f

Qg = {54}

L Qu={51, 52 53 Ap= mtmt 3= 0.99920

POLITECNICO DI MILANO



A correlated example (7)

We can compare the results with the ones of a system without
correlated failure, where failure rate a is equally divided between

the two components.
82

%\K As= ;= 0.96488

S1 S4

@ 0(/2+ﬂ,1 a/2+ﬂ~2 @ AP = T+t = O. 99974
/2+ﬂ.1

o/2 +12 Q,
X%

S3 As expected, the availability
of the correlated case is
s2 lower for both configurations.
Hi In the serial configuration,
31/ s: Ag= 7,=0.96435 the possibility of breaking
a

both components at the same

0 oth 5
,\/12 ‘a+/ Ap= i+ 70yt 753 = 0.99920 Em: increases the repairing
e |
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